Journal of Labelled Compounds and Radiopharmaceuticals *J Label Compd Radiopharm* 2007; **50**: 457–458. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/jlcr.1193

Short Research Article

The syntheses of (¹⁴C) and (¹³C₄)pyromellitic acid^{\dagger}

NICK SHIPLEY and KENNETH W. M. LAWRIE*

GlaxoSmithKline, Isotope Chemistry, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK Received 17 August 2006; Revised 2 November 2006; Accepted 22 November 2006

Keywords: carbon-14; carbon-13; cyanation; oxidation

Introduction

In the drug development process appropriate salt selection can be critical. For a recent project a pyromellitic acid (1,2,4,5-benzene tetracarboxylic acid), **1**, salt proved optimal.

We required carbon-14 and stable labelled versions of pyromellitic acid: the radio-isotopomer at 50– 60 mCi/mmol for traditional ADME work and the stable label as an internal standard in a LC/MS/MS assay. In general an effective internal standard requires an increase of at least 3 a.m.u. over the test substance and a very high degree of isotopic incorporation (typically <0.1% unlabelled). We chose to fulfil these criteria by mass labelling each of the carboxyl groups with carbon-13.

Results and discussion

1,2,4,5-Tetracyanobenzene is readily saponified to pyromellitic acid. We therefore chose this as our initial

target. We envisaged that a route common to both isotopomers could be developed by cyanation of tetrabromo or iodo benzene with either ¹³CN or ¹⁴CN. However, under a variety of conditions (CuCN, KCN/ CuI, Zn(CN)₂/Pd(Ph₃P)₄) no useful product was isolated. An alternative related approach suggested itself at this point. Oxidation of aryl methyl groups to carboxylic acids is a well known and straightforward process¹. We found that both 1,2,4,5-tetramethyl benzene and 2,4,5,-trimethylbenzoic acid could be oxidized by alkaline permanganate to pyromellitic acid in good yield (70–80%). This discovery proved crucial.

Cyanation of 2,4,5-trimethyl bromobenzene with $Cu[^{14}C]CN$ in NMP at 175°C followed by saponification of the crude [^{14}C]nitrile (NaOH, EtOH, reflux) gave 2,4,5-trimethyl[*carboxyl*- ^{14}C] benzoic acid in 84% yield from copper cyanide. Oxidation by slow addition of aliquots of 5% w/v KMnO₄ in water to a solution of the radiolabelled acid in 1.5M KOH at 90°C completed the synthesis. The crude product was triturated with ether/hexane and crystallized from hot water (60% yield, radiochemical purity >98%, specific activity 53 mCi/mmol).

Our initial plan was to prepare $[^{13}C_4]$ tetramethylbenzene by exhaustive metalation and methylation of tetrabromobenzene and subsequent oxidation. We anticipated that a large excess of MeI would be required, but $[^{13}C]$ MeI is inexpensive and readily available so this was not a major concern. Unfortunately, we were unable to drive the reaction to completion and isolated [*methyl*-¹³C₃]2,4,5-trimethylbromobenzene as the major product. However, we had already demonstrated in the carbon-14 synthesis that this could be readily converted to pyromellitic acid by a cyanation, saponification and oxidation sequence. Simply substituting Cu[¹³C]CN for Cu[¹⁴C]CN gave the desired product with a chemical purity of >98% and no detectable unlabelled content by MS.

^{*}Correspondence to: Kenneth W. M. Lawrie, GlaxoSmithKline, Isotope Chemistry, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, UK. E-mail: ken.w.lawrie@gsk.com

[†]Proceedings of the Ninth International Symposium on the Synthesis and Applications of Isotopically Labelled Compounds, Edinburgh, 16–20 July 2006.

458 N. SHIPLEY AND K. W. M. LAWRIE

REFERENCE

1. Bromby NG, Peters AT, Rowe M. J Chem Soc 1943; 144.